home
user-header

                        
                        
NVIDIA научила нейросеть эффективно бороться с шумом на фотографиях
11 июля 2018 г., 16:20 485

Разработчики из NVIDIA создали нейросеть, способную убирать шум с фотографий практически без искажений. Важное отличие этого алгоритма от похожих разработок заключается в том, что его обучали только на фотографиях, на которых уже был шум, рассказывают авторы работы, которая была представлена на конференции ICML 2018.

https://cdn.nplus1.ru/images/2018/07/10/a6196f072958830ba30cf97595c5132a.gif

NVIDIA / YouTube


 

При съемке в условиях плохого освещения фотоаппарат компенсирует недостаток света большей чувствительностью и это приводит к появлению большого количества шума на изображении. Некоторые исследователи применяли к этой проблеме методы машинного обучения, которые позволяли обучать алгоритм убирать шум с изображения. Но обычно для обучения применяются пары, составленные из «зашумленного» и чистого изображений. Это значительно упрощает обучение, но усложняет сбор обучающей выборки для алгоритма, потому что не для всех объектов можно сделать снимки на большой выдержке и с минимальным количеством шумов.

 

Группа разработчиков под руководством Тимо Айло (Timo Aila) из исследовательского подразделения NVIDIA предположила, что в некоторых условиях алгоритм можно обучить восстанавливать сигнал в месте шума, используя только изображения с шумом, то есть не предоставляя ему доступ к искомой части изображения. Вместо обучения на парах с одним чистым изображением исследователи применили обучение на паре изображений со случайным шумом. Разработчики отмечают, что по сути это аналогично тому, как фотоаппарат на длинной выдержке в темноте создает относительно чистое изображение из множества изображений с низкой выдержкой и низким отношением сигнал-шум.

 

 

Исследователи использовали для проверки подхода две сверточные нейросети: для большей части работы применялась сеть U-Net, а для одного из тестов исследователи использовали вместо нее остаточную сеть RED30. Авторы использовали в качестве обучающей выборки 50 тысяч изображений с разрешением 256 на 256 пикселей. Ко всем изображениям добавляли искусственный шум, причем для каждой пары изображений уровень шума был тоже случайным и нейросети необходимо было учитывать это при очистке изображения. Кроме того, алгоритмы обучались на рендерах помещений, фотографиях с нанесенными на них разноцветными надписями и других обучающих объектах.

 

Нейросети обучались в течение нескольких сотен и тысяч эпох (проходов по обучающей выборке), после чего их работу сравнивали с алгоритмами, обучавшимися на парах чистых изображений и изображений с шумом, а также с исходными изображениями. В качестве основной характеристики работы алгоритма авторы использовали пиковое отношение сигнала к шуму (PSNR), которое обычно применяют для оценки алгоритмов для подавления шума. В результате исследователям удалось подтвердить их гипотезу, согласно которой алгоритм можно обучить восстанавливать сигнал, не имея доступа к исходному изображению, с качеством, близким к алгоритмам, обучаемым на чистых изображениях без шума.

 

Помимо применения техники в фотографии, в частности в астрофотографии или съемке в темноте, разработчики также предложили применять ее для повышения качества снимков МРТ и продемонстрировали примеры работы алгоритма на таких снимках:

Снимок МРТ до и после обработки (Jaakko Lehtinen et al. / arXiv.org, 2018)

 

Недавно американские ученые научили нейросеть получать яркие фотографии с минимальным количеством шумов при съемке практически в полной темноте. В отличие от новой работы исследователей из NVIDIA они использовали пары изображений одного и того же места, сделанные с короткой и очень длинной выдержками.

 

N+1

#программирование

Избранное
Чтобы оставить комментарий, вам нужно авторизоваться
с помощью аккаунта в соц.сети
Включите премодерацию комментариев
Все комментарии к этому посту будут опубликованы только после вашего подтверждения. Подробнее о премодерации