home
user-header

                        
                        
Новости физики
24 мая 2019 г., 17:49 284

Дайджест новостей физики: Американские ученые достигли предела громкости звука в воде с помощью мощных лазеров. Китайские физики вырастили крупный лист "белого графена". Российские физики в Германии подтвердили высокотемпературную сверхпроводимость гидрида лантана. Другие коллеги из Самары создали технологию изготовления "плащей-невидимок", а по другому метаматериалов при помощи лазера. Новосибирские физики-ядерщики по новому оценили влияние нейтральной плазмы в термоядерном реакторе, что в будущем существенно уменьшит его стоимость.

https://indicator.ru/imgs/2019/05/09/06/26334/f3a756b0adbcf31e45a37e7bdeb6f9b0b51981c8.jpg

thechirographer.com


 

1. Физики достигли предела громкости звука в воде

Американские физики достигли предела громкости звука в воду, разогрев тонкую струйку воды рентгеновским лазером установки Linac Coherent Light Source (LCLS). В результате такого разогрева в струйке возникала ударная волна с давлением до 24 мегапаскалей, громкость которой составляла чуть меньше 270 децибел. Статья опубликована в Physical Review Fluids, кратко о ней сообщает пресс-релиз организации, препринт работы авторы выложили в социальную сеть ResearchGate.

Gabriel Blaj et al. / SLAC

 

Звук — это упругая волна, то есть бегущая в пространстве последовательность областей с повышенным и пониженным давлением. Чем больше амплитуда колебаний волны, то есть чем больше давление в ее пике, тем громче звук. Из-за широкого диапазона давлений, которые могут достигаться в акустической волне (а также из-за особенностей человеческого слуха) громкость удобно измерять в децибелах, то есть в логарифмической шкале. Эта шкала показывает, во сколько раз максимальное давление звуковой волны больше определенного порогового значения: громкость в децибелах = 20×lg(Pмаксимальное/Pпороговое). При этом давление нужно отсчитывать от равновесного давления среды. Как правило, в качестве такого значения выбирают порог слышимости человеческого уха; в воздухе этот порог проходит по давлению 20 микропаскаль, в воде — по давлению 1 микропаскаль. Например, громкость воздушной волны с давлением два паскаля составляет 20×lg(2/0,00002) = 100 децибел. Это громкость поезда в метро. Более подробно про громкость звука рассказывает задача Игоря Иванова.

 

Как правило, для распространения звука нужна среда: нет среды — нет упругих волн, нет звука. В космосе никто не услышит ваш крик (правда, эксперименты показывают, что вакуум все-таки проводит звук, хотя и очень плохо). Учитывая этот факт, легко догадаться, что громкость звука всегда ограничена сверху максимальным давлением, при котором среда разрушается и интерпретировать ее колебания в терминах волн нельзя. Например, в воздухе максимальный перепад давлений в акустической волне не превышает одной атмосферы. В самом деле, давление газа пропорционально концентрации его молекул; если молекул нет вообще, давление равно нулю. Следовательно, максимальное отклонение давления звуковой волны от давления среды не превышает атмосферного давления (сто килопаскаль при нормальных условиях). Поэтому максимальная громкость звука в воздухе составляет 20×lg(100000/0,00002) ≈ 194 децибела.

 

Однако в воде такие аргументы не работают, поскольку ее давление в принципе может быть отрицательным. Такое давление отвечают растягиванию среды, которое она выдерживает за счет межмолекулярных сил. Тем не менее, отрицательное давление воды ограничено снизу кавитацией, то есть спонтанным образованием пузырьков разреженного пара. Если пузырьки однородно рождаются во всем объеме, среда разрушается, и звук по ней идти не может. Теоретические расчеты показывают, что максимальное отрицательное давление по модулю не превышает 100 мегапаскаль, а с учетом сложного механизма кавитации в воде эта граница снижается до 30 мегапаскаль. Эксперименты подтверждают это ограничение. Таким образом, максимальная громкость звука в воде не превышает 20×lg(30000000/0,000001) ≈ 270 децибел.

 

Физики из Национальной ускорительной лаборатории SLAC впервые достигли такой большой громкости на практике. Для этого ученые впрыскивали в вакуумную камеру тонкие струйки воды диаметром от 14 до 30 микрометров, а затем облучали их импульсами фемтосекундного рентгеновского лазера суммарной энергией около одного миллиджоуля, которая выделялась за 40 фемтосекунд в пятнышке диаметром чуть больше одного микрометра (Linac Coherent Light Source, LCLS). В среднем струйка воды поглощала около двух процентов этой мощности. В результате вода быстро ионизировалась, разогревалась и испарялась. При этом в месте разогрева рождалась цилиндрическая ударная волна, которая разбегалась вдоль струйки и порождала «поезд» из вторичных ударных волн. Чтобы проследить за движением этих волн, физики подсвечивали струю оптическим лазером и записывали ее на КМОП-камеру со скоростью 9 тысяч кадров в секунду и разрешением 0,2 микрометра на пиксель. Кроме того, ученые с помощью накачивающе-зондовой микроскопии (pump-probe technique) делали отдельные кадры струи за 20 секунд до и 37 секунд после рентгеновского импульса.

 

Схема эксперимента и генерации ударных волн (Gabriel Blaj et al. / Physical Review Fluids, 2019)

 

Во всех случаях ученые наблюдали одинаковую картину распространяющихся ударных волн. Примерно через одну-две наносекунды после прохождения импульса струя разрывалась надвое полостью с плоскими границами (такие границы отвечают проекции цилиндрической волны). Еще через три наносекунды профиль ударной волны начинал изгибаться, и к десятой секунде под ней формировался темный треугольный регион, заполненный пузырьками пара. К двадцатой наносекунде регион начинал уменьшаться и к сотой наносекунде исчезал окончательно. Параллельно ударная волна порождала вторичные цилиндрические ударные волны, которые со временем также начинали изгибаться. Эти волны ученые связывают с распространением звука вдоль струи.

 

Образование и распространение ударной волны и темного региона (Gabriel Blaj et al. / Physical Review Fluids, 2019)

 

Чтобы оценить максимальное отрицательное давление таких ударных волн, ученые наблюдали за скоростью образование пузырьков в темном треугольном регионе. Для этого ученые проинтегрировали уравнение Рэлея — Плессе, которое описывает эволюцию пузырька пара в жидкости. В результате исследователи получили однозначную связь между скоростью роста пузырька, плотностью жидкости и пиковым отрицательным давлением. Подставляя в это уравнение максимальную скорость расширения пузырьков, измеренную в эксперименте (126 метров в секунду), физики получили, что максимальное давление жидкости составляло −24 мегапаскаля. Это отвечает громкости около 268 децибел. Частота такой волны составляла несколько сотен мегагерц.

 

Избранные кадры из видео. Генерация вторичных волн и образование пузырьков (Gabriel Blaj et al. / Physical Review Fluids, 2019)

 

Интересно, что похожий механизм используют раки-щелкуны, способные издавать щелчки громкостью свыше 200 децибел. Когда рак сжимает клешню, вокруг нее образуются кавитационные пузырьки, которые направляются в сторону добычи. При схлопывании этих пузырьков они разогреваются до пяти тысяч кельвинов, что приводит к кратковременному образованию плазмы, вспышке света и мощному взрыву, оглушающему добычу. Объяснить этот механизм физики смогли только в 2001 году, а несколько месяцев назад им удалось воспроизвести его с помощью 3D-напечатанной модели клешни.

 

Узнать последние новости, связанные со звуком, можно в нашей рубрике «Звук». В частности, в этой рубрике можно прочитать, как физики научились измерять отдельные кванты звука и передавать звук напрямую в ухо с помощью лазера.

 

2. Физики вырастили рекордно большой лист «белого графена»

Китайские физики вырастили квадратный лист двумерного гексагонального нитрида бора площадью около ста квадратных сантиметров, что почти в тысячу раз больше предыдущего рекорда. Для этого ученые наращивали на медной фольге ступеньки, а затем осаждали на ней пары боразана. Кроме того, предложенный авторами метод легко можно адаптировать для выращивания других двумерных кристаллов. Статья опубликована в Nature, препринт работы выложен на сайте arxiv.org.

Li Wang et al. / Nature, 2019

 

С тех пор, как Александр Гейм и Константин Новоселов получили графен, физики не прекращают исследовать двумерные материалы и разрабатывать двумерные электронные устройства. По сравнению с обычными электронными приборами на основе оксида кремния двумерные электронные устройства обладают рядом преимуществ — они меньше, быстрее и функциональнее. В настоящее время такие материалы уже используются в электронике, оптоэлектронике и фотовольтаике. Впрочем, чтобы распространить эти достижения на промышленные масштабы, нужно научиться быстро выращивать большие двумерные кристаллы, замещающие привычные электронные компоненты — проводники, полупроводники и изоляторы. Пока что ученые разработали такие методы только для небольшого числа материалов.

 

В частности, до сих пор физики не умеют выращивать большие площади двумерного гексагонального нитрида бора («белого графена»). Благодаря стабильности, плоской поверхности и широкой запрещенной зоне некоторые физики называют этот материал лучшим двумерным изолятором. К сожалению, типичный размер хлопьев «белого графена» не превышает одного миллиметра. В основном такой малый размер объясняется особенностями роста кристалла. С одной стороны, из-за чрезмерной нуклеации невозможен сценарий, в котором отдельный домен вырастает в крупный монокристалл. С другой стороны, из-за тройной симметрии решетки домены нитрида бора часто повернуты в разные стороны, а потому неспособны склеиться в однородный кристалл. По крайней мере, эти проблемы сопровождают рост нитрида бора на большинстве субстратов.

 

Однако группа физиков под руководством Ли Вана (Li Wang) придумала, как можно избавиться от этих проблем, и вырастила двумерный кристалл «белого графена» размером 10×10 сантиметров. Это почти в тысячу раз больше предыдущего рекорда. Чтобы добиться такого впечатляющего результата, исследователи адаптировали метод эпитаксиального наращивания графена на фольге меди (111) (с помощью него они два года назад вырастили лист графена размером 5×50 сантиметров). Сам по себе этот материал не очень подходит для выращивания нитрида бора: он обладает слишком высокой симметрией, из-за которой вырастающие домены нитрида бора имею разную ориентацию. Чтобы понизить эту симметрию, исследователи в течение десяти минут отжигали фольгу при температуре 1060 градусов Цельсия (при этой температуре медь начинала плавиться), а потом еще три часа грели ее при температуре 1040 градусов. В результате на ее поверхности образовались ступеньки, которые понижали степень симметрии поверхности и заставляли домены бора ориентироваться в одну и ту же сторону. Образование ступенек ученые контролировали с помощью рентгеноструктурного анализа, то есть просвечивали фольгу рентгеном и измеряли положение дифракционных пиков.

 

Изображение поверхности фольги после отжига, полученное с помощью атомного силового микроскопа (Li Wang et al. / Nature, 2019)

 

Чтобы нарастить на фольге пленку из «белого графена», исследователи помещали над ней тигель из оксида алюминия, заполняли его боразаном H3B-NH3 и разогревали до температуры 1035 градусов Цельсия. Как только тигель прогревался, ученые понижали давление газа до 0,002 атмосферы и продували его смесью аргона и водорода. Примерно после часа синтеза на поверхности фольги возникали отдельные домены нитрида бора, а еще через два часа домены сливались в сплошной двумерный кристалл. За ростом кристалла ученые следили с помощью рентгеновской, рамановской и абсорбционной спектроскопии, а также с помощью атомного силового и микроскопа и просвечивающего растрового электронного микроскопа. Все эти методы подтвердили, что выращенный двумерный кристалл является кристаллом гексагонального нитрида бора. Более того, измерения показали, что рост домена всегда начинался у подножия ступеньки, благодаря чему 99,5 процентов доменов были ориентированы в одну сторону. Таким образом, кристалл «белого графена» получался однородным.

 

Расположение доменов нитрида бора на начальном этапе роста (Li Wang et al. / Nature, 2019)

 

Наконец, чтобы объяснить, почему домены выстраиваются вдоль ступенек, ученые численно рассчитали энергию связи ступеньки и края домена гексагонального бора. Для этого физики использовали теорию функционала плотности. Как и ожидалось, расчеты показали, что домену наиболее выгодно ориентироваться вдоль направления <221> в кристалле меди. Незначительные же отклонения от этого правила ученые объясняют дефектами ступенек.

 

Образование доменов у подножия «ступенек» (Li Wang et al. / Nature, 2019)

 

Авторы статьи считают, что в будущем разработанный ими метод можно будет адаптировать для выращивания других двумерных кристаллов, обладающих пониженной симметрией — например, дихалькогенидов переходных металлов. Это, в свою очередь, удешевит производство двумерных устройств.

 

Физики часто используют двумерный гексагональный нитрид бора в качестве вспомогательного материала при проведении других экспериментов. Например, в августе 2015 году исследователи из лаборатории Андрея Гейма в Университете Манчестера предложила «ламинировать» неустойчивые двумерные материалы устойчивыми слоями «белого графена», а затем проверила предложенный способ на монослоях черного фосфора и селенида ниобия. В августе 2018 ученые разработали поворотную гетероструктуру, состоящую из слоев графена и гексагонального нитрида бора. Слои можно поворачивать относительно друг друга и благодаря этому управлять электрическими, оптическими и механическими свойствами образованной гетероструктуры. В апреле 2019 американские ученые поставили с помощью листа «белого графена» рекорд плотности квантовых источников фотонов, тем самым вплотную приблизившись к теоретическому пределу. Кроме того, с помощью двумерного нитрида бора можно печатать гибкие транзисторы, разделять изотопы водорода и превращать топологический изолятор в сверхпроводник.

 

3. Физики подтвердили сверхпроводимость гидрида лантана при температуре −23 градуса Цельсия

Группа физиков при участии российских ученых подтвердила сверхпроводимость гидрида латана LaH10 при температуре 250 кельвинов (−23 градуса Цельсия) и давлении 1,7 миллиона атмосфер. На этот раз исследователи не только увидели падение сопротивления образца ниже критической температуры, но также подтвердили изотопический эффект и зависимость критической температуры от напряженности магнитного поля. Кроме того, физики установили кристаллическую структуру рекордного сверхпроводника. Статья опубликована в Nature, препринт работы выложен на сайте arXiv.org.

A. P. Drozdov et al. / Nature, 2019

 

Несмотря на то, что явление сверхпроводимости было открыто более ста лет назад, физики до сих пор плохо понимают, как оно работает. «Стандартной» теорией сверхпроводимости является теория Бардина — Купера — Шриффера (БКШ), в которой сверхпроводящая фаза возникает за счет конденсации куперовских пар. Эта теория хорошо объясняет низкотемпературные свойства металлов и некоторых других соединений, однако плохо справляется с большинством сверхпроводников с критической температурой выше 30 кельвинов. Поэтому наравне с теорией БКШ физики разработали еще несколько десятков теорий сверхпроводимости, которые в целом разбиваются на две большие группы — теории со слабой связью и теории с межслойной связью. Даже существует специальный журнал, в котором публикуются такие теории (Journal of Superconductivity and Novel Magnetism). Правда, работоспособность большинства из этих теорий находится под вопросом.

 

К теориям высокотемпературной сверхпроводимости относится и полуфеменологическая теория Мигдала—Элиашберга (Migdal-Eliashberg theory) — по сути, модифицированная теория БКШ, в основе которое лежит образование куперовских пар за счет обмена фононами. Эта теория предсказывает, что при достаточно высокой энергии фононов и достаточно сильной связи между фононами и электронами критическая температура сверхпроводника может быть очень большой. При этом давление, при котором возникает сверхпроводящая фаза, как правило, составляет несколько миллионов атмосфер, а кристаллическая структура материала напоминает клатраты.

 

В частности, теория Элиашберга предсказала сверхпроводимость сероводорода H3S при температуре 203 кельвина (−70 градусов Цельсия) и давлении 1,5 миллиона атмосфер, что впоследствии подтвердилось на практике. Кроме того, с помощью численных расчетов в рамках этой теории за последние десять лет физики нашли еще несколько соединений с критической температурой выше 200 кельвинов: гидрид кальция CaH6 (Tc ~ 235 кельвинов, P ~ 1,5 миллиона атмосфер), гидрид лантана LaH10 (Tc ~ 280 кельвинов, P ~ 2 миллиона атмосфер) и гидрид иттрия YH10 (Tc ~ 320 кельвинов, P ~ 2,5 миллиона атмосфер). Последние два соединения потенциально могли стать долгожданными комнатными сверхпроводниками.

 

В августе прошлого года сразу две группы физиков подтвердили [1,2] эти предсказания в прямом эксперименте: обе группы увидели признаки сверхпроводимости гидрида лантана LaH10 при температуре 250 кельвинов и давлении 1,7 миллиона атмосфер. Эти значения немного ниже предсказаний теории, но совпадают с ней по порядку. К сожалению, более подробные измерения ученые тогда произвести не успели. В основном, физики видели только резкое падение сопротивление образца, сопровождающее охлаждение ниже критической температуры (подробно о работах ученых можно прочитать в нашей новости). Теперь же группа исследователей под руководством Михаила Еремца вернулась к измерениям с полученными образцами и подтвердила другие характерные эффекты, сопровождающие сверхпроводящую фазу — изотопический эффект и эффект Мейснера. Кроме того, ученые установили кристаллическую структуру рекордного сверхпроводника.

 

Вообще говоря, чтобы подтвердить эффект Мейснера, нужно измерить намагниченность образца и показать, что линии магнитного поля полностью из него вытесняются. К сожалению, для полученных образцов гидрида такое измерение невозможно: их диаметр не превышает двадцати микрометров, а намагниченность не может почувствовать даже самый точный СКВИД-магнетометр. Более того, образец должен находиться в алмазной наковальне, которая сжимает его до нужного давления. Тем не менее, сверхпроводящую природу этого эффекта также можно установить по зависимости критической температуры от напряженности внешнего магнитного поля: достаточно сильное магнитное поле проникает внутрь материала и разрушает сверхпроводящую фазу. Приближенно зависимость критического магнитного поля от критической температуры можно описать параболой. Как показал эксперимент, для гидрида лантана эта зависимость выполняется.

 

Зависимость критического магнитного поля от критической температуры при нагревании (красная линия) и охлаждении (синяя линия) (A. P. Drozdov et al. / Nature, 2019)

 

Интересно, что в разных опытах физики наблюдали резкое падение сопротивления образца не только при 250 кельвинах, но и при более низких температурах. Поэтому ученые предположили, что при их способе синтеза гидрида лантана может образоваться не одно, а несколько соединений с разной кристаллической решеткой. Чтобы проверить эту гипотезу, ученые провели рентгеноструктурный анализ. Другими словами, ученые просвечивали образцы рентгеном и измеряли положение дифракционных пиков при разных ориентациях кристалла, а потом восстанавливали по ним его кристаллическую структуру. Как и ожидалось, ученые обнаружили несколько фаз гидрида лантана. При этом фазе с максимальной критической температурой отвечала кубическая гранецентрическая решетка с группой Fm3m.

 

Зависимость сопротивления образца от температуры (основная картинка) и давления (врез). Разными цветами показаны соединения с разной кристаллической решеткой (A. P. Drozdov et al. / Nature, 2019)

 

Чтобы подтвердить изотопический эффект, исследователи заместили атомы водорода в кристаллической решетке гидриде лантана атомами дейтерия. Точнее, ученые заново синтезировали соединения в дейтериевой атмосфере, а потом отобрали среди них образцы с подходящей кристаллической решеткой. Наконец, исследователи измерили критическую температуру полученных сверхпроводников LaD10. Эта температура составила примерно 180 кельвинов, что согласуется с изотопическим эффектом, который утверждает, что критическая температура сверхпроводника обратно пропорциональна корню массы изотопа, из которого он состоит.

 

Температурная зависимость сопротивления LaH10 (черный) и LaD10 (синий) (A. P. Drozdov et al. / Nature, 2019)

 

Таким образом, группа Еремца подтвердила, что гидрид лантана LaH10 демонстрирует сразу несколько свойств сверхпроводника. Физики отмечают, что их работа подтверждает теории, предсказывающие высокотемпературную сверхпроводимость и кристаллическую структуру соединения. Поэтому исследователи считают, что в будущем она поможет найти настоящие комнатные сверхпроводники.

 

Стоит отметить, что в июле прошлого года индийские физики Дев Кумар Тапа (Dev Kumar Thapa) и Аншу Пандей (Anshu Pandey) заявили, что им удалось получить сверхпроводник при температуре −37 градусов Цельсия и нормальном давлении — для этого ученые охлаждали наноструктурированное серебро на золотой подложке. В отличие от гидрида лантана, для поддержания сверхпроводимости которого требуется огромное давление, разработка индийцев потенциально может иметь практические применение. Тем не менее, статья индийцев вызывает подозрения у других физиков; хуже того, исследователи отказались раскрывать детали эксперимента. К настоящему моменту статья физиков так и не опубликована в рецензируемом журнале и существует только в виде препринта. Поэтому говорить о практической комнатной сверхпроводимости пока что рано — сначала надо дождаться независимой проверки открытия Тапа и Пандея.

 

Про различные теории сверхпроводимости можно подробно прочитать в нашем материале «Ниже критической температуры». В частности, эта статья объясняет «стандартный» механизм Бардина — Купера — Шриффера, магнонный, экситонный и более экзотические механизмы. А про ранние этапы исследования сверхпроводимости — в частности, вклад Нобелевского лауреата Алексея Абрикосова — рассказывает материал «Пионер сверхпроводимости».

 

4. Физики из РФ научились создавать "плащи-невидимки" при помощи лазера

Российские исследователи разработали методику, которая позволяет создавать плоские линзы, "плащи-невидимки" и другие экзотические оптические приборы, выжигая наноструктуры на поверхности листов из золота и других металлов при помощи лазера, сообщает РИА Новости. Ее описание было представлено в журнале Optics Express.

 

"Мы продемонстрировали замечательную возможность применения полностью оптического подхода для структурирования вещества в наномасштабе. Это демонстрирует новые возможности, которые открывает усиливающий эффект взаимодействия структурированного света и структурированного вещества", — заявила Светлана Хонина из Самарского национального исследовательского университета.

 

В последние годы ученые активно создают и изучают свойства так называемых метаматериалов – искусственных структур из множества мелких элементов, способных необычным образом взаимодействовать со светом или другими формами электромагнитного излучения. Метаматериалы, как сегодня считают физики, станут основой сверхбыстрых световых компьютеров будущего и других футуристичных гаджетов.

 

Строго говоря, метаматериалы не являются изобретением человека – похожие на них кристаллы и структуры встречаются на крыльях многих бабочек "металлической" окраски, на глазах и панцирях многих других насекомых и даже в знаменитых синих складках на мордах павианов-мандрилов.

 

К примеру, недавно ученые обнаружили, что крылья некоторых райских птиц покрыты уникальным "нанотехнологичным" оперением, которое поглощает 99,95% света и выглядит более черным, чем любой другой природный темный материал на Земле. Это стало возможным благодаря появлению ямок, своеобразных "ловушек" для света, на поверхности их перьев, препятствующих его отражению и "побегу" в окружающую среду.

 

Изначально подобные материалы, как отмечает пресс-служба Российского научного фонда, поддерживавшего работу физиков, ученые собирали фактически вручную, изготавливая отдельно наночастицы и подложку и затем "склеивая" их в единую конструкцию. Этот подход позволяет достичь высокой точности их сборки, но не пригоден для массового производства подобных оптических приборов.

 

По этой причине сейчас физики пытаются создать методики, которые позволяли бы "печатать" метаматериалы химическим путем или "вытачивать" их из листа металла, кремния или других материалов, обрабатывая их лазером.

 

В этом ученым помогают особые лазерные импульсы, устроенные так, что энергия в них распределена неравномерно. К примеру, вспышки света можно "закрутить" таким образом, что в их центре будет возникать пустота, или заставить их огибать препятствия, не рассеиваясь при этом.

 

Хонина и ее коллеги создали методику, которая позволяет использовать подобные лазерные излучатели для создания сложных метаматериалов и проверки их работы без применения каких-либо других инструментов, экспериментируя со сверхкороткими импульсами света, похожими по структуре на "бублик", и тонкими пленками из золота.

 

Она состоит из трех этапов. Сначала ученые наносят набор из ямок и выступов на поверхности металлической пластинки, обрабатывая ее относительно мощными, но при этом очень короткими лазерными импульсами. После этого физики нанесли на их поверхность раствор родамина, бурой органической краски, способной поглощать лучи зеленого лазера и светиться ярко-желтым светом.

 

Эта процедура помогла им проверить работу получившегося метаматериала, облучая его при помощи того же лазера, но на более низком уровне мощности. Подобный подход, как считают ученые, заметно упростит, ускорит и удешевит создание различных сложных оптических приборов с необычными свойствами.

 

5. Ученые изменили представление о влиянии нейтрального газа на плазму в открытых ловушках

Научная группа Института ядерной физики им. Г. И. Будкера СО РАН впервые показала, что скорость откачки нейтрального газа в вакуумной системе открытой магнитной ловушки может быть уменьшена без роста потерь по сравнению с первоначальной оценкой почти в 100 раз. Результаты эксперимента не только изменят теоретические представления о влиянии нейтрального газа на плазму, но и в будущем помогут упростить и удешевить конструкцию проекта газодинамической многопробочной ловушки. Результаты опубликованы в журнале Plasma and Fusion Research. Работа проводится при поддержке гранта Российского научного фонда.

https://indicator.ru/imgs/2019/05/09/06/26334/f3a756b0adbcf31e45a37e7bdeb6f9b0b51981c8.jpg

thechirographer.com

 

Главной задачей исследований ИЯФ СО РАН по удержанию плазмы является физическое обоснование термоядерного реактора на основе магнитной ловушки открытого типа, способного работать с топливами, не содержащими радиоактивный тритий. Один из этапов достижения этой цели — создание в ИЯФ СО РАН Инфраструктурного комплекса разработки новых технологий удержания термоядерной плазмы — ГДМЛ. В проект ГДМЛ будет интегрирован весь объем передовых знаний и технологий в области открытых магнитных систем удержания плазмы, накопленных в мире.

 

Для достижения параметров проекта ГДМЛ, в частности, необходимо поддерживать в расширителе магнитной ловушки вакуум с параметрами, гарантирующими ее стабильную и надежную работу.

 

«Нейтральный газ, неизбежно нарабатывающийся в вакуумной системе, увеличивает потери энергии плазмы и снижает ее температуру — рассказывает старший научный сотрудник ИЯФ СО РАН, кандидат физико-математических наук Елена Солдаткина. — Поэтому вопрос его откачки важен для любого типа открытой магнитной ловушки. Чтобы избавиться от нейтрального газа, необходимо откачивать его из установки со скоростью миллионы литров в секунду, а это серьезно усложняет проект и повышает его стоимость».

 

В недавних экспериментах на установке ГДЛ (газодинамическая ловушка) специалисты ИЯФ СО РАН впервые показали, что существующие теоретические расчеты не точны — нейтральный газ в вакуумной системе оказывает меньшее влияние на температуру плазмы, чем предсказывалось, и скорость его откачки может быть уменьшена по сравнению с первоначальной оценкой почти в десять тысяч раз.

 

«Процессы взаимодействия горячей плазмы и холодного газа оказались не так просты, как их описывает теория. Наши эксперименты показали, что плазма при столкновении с нейтральным газом не теряет свои параметры, а пытается "сама за себя постоять", — добавляет Елена Солдаткина. — Она выталкивает газ из горячего центра наружу (к стенкам торцевого бака), то есть берет часть работы по откачке на себя. Так что совсем необязательно откачивать нейтральный газ с такой невероятной скоростью (миллионы литров в секунду), достаточно ста литров в секунду. В будущем это поможет упростить конструкцию ГДМЛ и снизить стоимость всего проекта».

 

На данный момент в ИЯФ СО РАН разрабатывается собственная, более полная, теория взаимодействия плазмы с нейтральным газом.

 

«Предварительные эксперименты на установке ГДЛ показали, что нейтральный газ не проникает в плазму, — рассказывает старший научный сотрудник ИЯФ СО РАН, кандидат физико-математических наук Алексей Беклемишев. — Чтобы разобраться в причинах, почему этого не происходит, необходимо построить теоретическую модель. Гипотеза, которую мы развиваем, заключается в следующем: нейтральный газ, находящийся в объеме расширителя, при нагреве плазмой и постоянном давлении оттесняется к стенкам, и таким образом в плазме его остается довольно мало. Гипотеза простая, но соответствующая ей математическая модель при требуемых параметрах сложна и плохо поддается компьютерным расчетам. На данный момент мы построили самую простую модель, в которой газ представлен в виде твердых шариков, которые сталкиваются с плазмой. Результаты качественно согласуются с тем, что наблюдается в эксперименте, то есть наша модель показывает, что газ действительно вытесняется к стенкам».

 

По материалам N+1 (1, 2, 3), Научная Россия (4) и Индикатор (5)

#естественные_науки, #наукороссия

Избранное
Чтобы оставить комментарий, вам нужно авторизоваться или зарегистрироваться
Читайте также

В это воскресенье Джин Грейнджер была сама не своя. Пару дней назад ее дочь пообещала быть на семейном обеде сегодня, но предупредила, что придет не одна, а с молодым человеком. Этот самый молодой человек все никак не шел из головы женщины. Совсем недавно Гермиона рассталась с Рональдом, а сейчас знакомит их с совершенно другим мужчиной. Неужели она снова влюбилась? Может, у них все серьезно?

С этими мыслями она не расставалась все утро, даже заразила своего мужа. Томас, как настоящий отец, уже готовился к сражению за любимую дочку. Сегодня бедного мальчика ждет тщательная проверка. Нельзя же отдавать их малышку кому попало! Женщина усмехнулась, вспомнив далекий день, когда Гермиона привела в их дом бывшего парня. Тогда Рон весь вечер сидел красный, как рак, и боялся лишний раз раскрыть рот. Джин это смущение казалось забавным, а вот Томасу парень не понравился. Он считал его недалеким и абсолютно не достойным их Гермионы. Ей вспомнились его слова после того знаменательного ужина: «Моя дочь достойна лучшего, она слишком умна для него, этот парнишка до нее не дотягивает. Скоро ей станет скучно». Хоть парочка и продержалась несколько лет, в конце концов, он оказался прав. Наверное, подсознание все-таки подсказывало Гермионе, что не стоит связывать навсегда свою жизнь с Роном, поэтому она и говорила «нет» каждый раз, когда он намекал на брак и создание семьи.

Включите премодерацию комментариев
Все комментарии к этому посту будут опубликованы только после вашего подтверждения. Подробнее о премодерации
Обратная связь